Determining the Value of a Foul Ball

Nathan Backman, Jake Balek, Hunter Geise, Danielle Napierski, and Nolan Pittman

Syracuse University

Pitcher Beneficial

Batter Beneficial

VS

Methodology

Analyze Metric in Context of Player and Team Offensive Output Create Algorithm Using These Components to Determine the Probabilities

Model Probability of Pitch Being Fouled Off

2020 - 2023 Pitch Level

2023 Foul Balls

Creating Out Probabilities

Foul Ball Out Probability Added: 77.32% - 61.02% = 16.30%

Batted Ball Out Model

S

- Random Forest
- On Base/Out
- Predictors Used:
 - Pitch Characteristics*
 - Statcast Zone
 - Batter Handedness

Out Probability by Zone

ſ	0.564	0.635			1	P(Out)	
	0.553	0.5	65	0.584			< .521
							(.521, .535)
	0.548	0.529		0.547			(.536, .550)
							(.551, .570)
	0.588	0.546		0.542			(.571, .585)
							(.586, .600)
0.621			0.597				> .601

	0.639		0.568		
	0.584	0.552		0.551	
ŀ	0.542	0.505		0.531	
	0.521	0.5	515	0.563	
	0.578		0.602		

Left-Handed Batters

Right-Handed Batters

Foul Ball Model

Naive Bayes

 $P(foul \text{ or whiff } | \text{ feature}) = \frac{P(feature | foul \text{ or whiff}) \cdot P(foul \text{ or whiff})}{P(feature)}$

Predictors Used:

- > Count
- > Pitch Characteristics

"Hittable" Pitches

S

Shohei Ohtani 2023

Called Balls and Strikes

Called Strike Probability

Building an Algorithm

Batter Conditions

Foul Ball Out Probability Added

Pitcher Conditions

Foul Ball Out Probability Added

P(Count) - P(Count | No Swing), Not Hittable, <2 Strikes

```
Pitcher FOPA = 🚽
```

* = mean ** = weighted mean

```
P(Count) - P(Count | No Swing)
P(Whiff) - P(K),*
```

Not Hittable, 2 Strikes

```
P(Count) - P(Out | Ball in Play), Hittable, <2 Strikes
```

```
P(Count) - P(Out | Ball in Play)
P(Whiff) - P(K),**
```

Hittable, 2 Strikes

Leaderboards

Shiny App

Hitter Metric Analysis

	FOPA	
	Ha-Seong Kim	-34.90
	Spencer Torkelson	-30.53
	Alex Call	-22.08
	Willy Adames	-19.74
	Brandon Nimmo	-19.56
	Cody Bellinger	-18.54
	Daulton Varsho	-18.12
	Anthony Santander	-17.57
	Ty France	-17.01
	Spencer Steer	-16.34

Pitcher Metric Analysis

	FOPA	
	Framber Valdez	12.71
ġ	Justin Steele	12.51
	Mitch Keller	12.29
Ô	Kyle Freeland	11.89
	George Kirby	11.07
ê	Pablo Lopez	10.93
	Kyle Gibson	9.92
	Johan Oviedo	9.37
	Logan Gilbert	8.98
THE LA	Yusei Kikuchi	8.90

Shortcomings

- Interpretation of "good" and "bad" foul balls
- Model performance
- Different model types
- Modeling on a league level
- Explanatory variables

